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Abstract. In this paper we propose a velocity estimator for servo applications
based on adaptive observers. Exponential convergence to zero of the estimation
error and parameter identification error is established. A numerical example is
included to illustrate the results, where a velocity estimation is done even without
the direct knowledge of the state equations, only with the knowledge of the output
equation.
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1 Introduction

Linear systems are the basis of many control analysis and synthesis. If a system has a
linear state-space representation, several control strategies can be used. In particular for
linear time invariant systems, when the states are not available for direct measurement,
linear observers can be proposed for estimating these and a linear control strategy may
be implemented. The most used and popular one is the Luenberger observer. In this
sense, several works have been made and textbooks exist on this subject (see, e.g.,[1]).
In particular, when the states are not available but the parameters are assummed to be
known, effective strategies based on sliding modes have been proposed [2].

However, when the parameters of the linear model are unknown, parametric identi-
fication prior to observer and control design must be done. In the case where states and
parameters are unknown, and only the output can be measured, the problem turns to be
harder to solve. This problem has been studied in the literature under the topic known
as adaptive observers, where the strategy focuses on a certain canonic form and the
minimal number of parameters that can describe the dynamical behavior of a system.
In [3] a succinct description of various adaptive identifiers is described.

In this paper we propose a velocity estimator for servo applications based on adap-
tive observers [4, 5] for linear systems. For nonlinear systems, a general scheme was
presented in [6]. This algorithm tends to be simpler in its implementation with an easier
structure than those reported in the literature [7], [8],[3], [9]. Two examples are shown
in order to illustrate the effectiveness of the algorithm.
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2 Problem Statement

Let a single-input-single-output system be described by the linear state-space equation

EZ{x:Ax-}-Bu

y=Cx M

We assume that C is known, A and B are unknown, the pair (A, C) is observable
and y and u are known and measurable. Then, there exists a linear matrix L such that
places the eigenvalues of the matrix Ac = A — LC in any location, although its param-
eters are unknown. In general, we consider that the matrix A, is Hurwitz.

If this assumptions are fulfilled, then an output injection Ly can be done in the in
the form

x=(A-LC)x+ LCx+ Bu=Axx+ Ly + Bu

In this sense, the system can be rewritten as

x=Ax+ [Inxnyélnxnu] [g'] = Acx+qo(y,u)0 )
where .
‘P(y: u) = [InxnyEInxnu] A3)
and
N T
L=[l ln]T, B=[b - b,.]T, 0= [ B sos B, §bl o By ] - [g]
C))

Now, if the matrices L and B are found by identification, then the dynamics of
matrix A can be known; thatis, A = A, + LC.

2.1 Persistent excitation condition for ¢ (y, u)

Now, in order to assure that in the parametric identification process is done, a persistent
excitation condition is needed for ¢(y, u). This condition is fulfilled if there exists a
positive lower bound a such that

t+T
/ T pdr > Ia Q)
t

Theorem 1 The regressor (3) is persistently excited if y and u are nonzero and not
linearly dependent in [t,t + T).

Proof. Without loss of generality, consider ftH"T f(r)dr as [ f(r)dr. Let

t+T 2%
Iy : Iy* : Iyu
A/[:/ T dT=/[ ..... .] Iy: T dT=/ svssasadmecesses| d 6
t v Iu [ b u] Iyu.qu,2 4 ©
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Now define N = [ Iy?dr, P = [ Iyudr and Q = [ Iu?dr. So,

w=|3ig] @

We need to check the determinant of M in (t,t + T in order to evaluate if it loses
rank in some point, and so, making o > 0 non existent. By its Schur complements, the
determinant of M can be evaluated as

M = det(N)det(Q — PN~1P) ®8)

For the first factor, as y is nonzero and N is a diagonal matrix,
n n
det(N) = H/yzdr = (/yzd'r) >0
i

The second factor can be easily evaluated, as the argument is composed by diagonal
matrices. So, we have that

= b d udr
det(Q — PN-'P) = H (/u%{r - %%)

oy [ [ [ yidr - (fyudr)2
- (Ll

®

By the Cauchy-Schwartz inequality, we know that, if u and y are linearly indepen-
dent and nonzero in [t, ¢ + T7, then

2
/u2d‘r/y2d-r > (j yudr) (10)

It follows that det(Q — PN~1P) > 0, and finally M > 0, so there exists a positive
such that M > al.

3 Identification based on an Adaptive Observer

To identifiy L and B, we use the adaptive observer proposed by [4], that makes a dual
estimation of states and parameters. The equations that describe this observer are:

T

(Ac— KC)T + 9(y,u) (11
rr’c?(y - Cci) (12)
%= A%+ oy, u)0 + (K + YTYTCT)(y - Cx)

<}
Il

(13)
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where 7 is a filtered signal from o(y, ©).

This equations are obtained from the following analysis. In first place, consider the
linear system defined by (2) to work as a parallel model for (1). The problem turns out
into a joint identification problem of both x and 6. As the pair (A, C) is observable,
and L is previously designed as an output injection that preserves the observability of
the pair (A¢, C) a vector K € R™ can be found such that the matrix A — LC — KC =
A. — KC is Hurwitz.

Taking ¢ = ¢(y, u) and following this, an output injection is considered for the
state equation in the form

x=(Ac— KC)x + p0 + Ky. (14)

Following a similar treatment as [5], the states can be decomposed into

X = Xy + X, (15)

where x is composed by the linear combination of two signals x,, X,
xy = (Ac — KC)xy + Ky, (16)
Xy = (Ac — KC)x, + 6. 17

As the dynamics for x,, are given in a linear form, an estimator for this signal can
be obtained by the linear observer

%y = (Ac — KC)%, + Ky, (18)

and an estimator for x,, is proposed to have the form
%o = (Ac — KC)ky, + pb + T(t)8, (19)

where T defines a dynamic transformation X, = T(t)é. By developing the derivative
of X,

%ﬂ = T8+ Tby, = (Ac — KC)T0y + o0 + 6, 20)
we have that
176 = (Ac — KC)T6 + 8, @1
(T—(AC—KC)T—cp)é=0. 22
This last equation gives .
T =(A.— KC)T + ¢, (23)

which describes a filtered matrix of the regressor . Since ¢ is bounded, so is 7" because
A. — KC a Hurwitz matrix. The adaptive algorithm is proposed to be

= rYTCT(y - C%), (24)

where I’ is a positive definite constant gain matrix. The stability and convergence of the
proposed observer and the adaptive algorithm are summarized in the following theorem.
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Theorem 2 Consider the system (1). Assume that it is observable and so transformable
into the equivalent system (2). The following system

x=Ax+ oy, uw)d + (K +Trr7cT?) (y - Cx), (25)
with the adaptive algorithm
by = ITTCT(y - Cx), 26)
where I' > 0, and the gain matrix K € R" is such that A — KC is Hurwitz, and
T = (A. — KC)T + ¢(y,u), @n

the filtered version of p(y,u), guarantees that all signals are bounded, and the state
estimation error X = X — x and parameter error 6 = 8 — 0 are exponentially stable,
provided that the regressor matrix (3) is persistently exciting, i.e.,

t+T
/ ¢ (r)e(r)dr 2 al. (28)
¢
for some 0 < o, and T > 0, considering o(7) = ¢ (y (), u(7)).

Proof. The smooth function Ly + Bu can be written as ©(y,u), and then get Ly +
Bu — p(y,u)0 = 0, if @ = 6. In this sense, the system (1) can be represented as

X = Acx + o(y, u)d, (29)
y=0Cx. (30)

Now, taking ¢ = ¢(y, u) and considering (25) such that X is meant to be an estimate
of x, we define the error signal

€(t) = % — T4. @1

wherex =x—%,0=0-0.
The derivative of the previous equation represents the error signal dynamics, which
are

£(t) = (Ac — KC)E, (2)
6=-rYTCcTC(e+16) = -rrreTere - rrrcrce.

It follows that £ is exponentially stable, as the matrix A— K C is designed to be Hurwitz.
Moreover, T must be bounded as is obtained from a stable filtering of ¢, that is also
bounded.
Now, it can be proven [5, 10] that under a persistent excitation condition (28) the
origin of the system
x=-T¢"px (€X)

is exponentially stable. It follows that the homogeneous part of (33) is also exponen-
tially stable. So, finally, lim;_.., 6 = 0.
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4 Examples

In this section, two examples are given in order to demonstrate the effectiveness of
the proposed algorithm. The first example shows how this algorithm can estimate the
velocity of a DC motor without direct derivation, even when the parameters of the
state equation matrices are unknown and only the output matrix is known. The second
example shows how the proposed algorithm can not only estimate the velocity, but also

be used for an effective parameter identification.

4.1 Velocity estimation for a DC motor
Consider a 2nd order system for a DC motor, controlled by a voltage signal u(t) in the

Kou(t) =7(t) .
foras S gh =t K,u(t) = J6 + b0 + k6 (34)

where @ is the angle of the rotor, J is the rotor inertia, b the viscous friction, K, the
gain constant for the input and 7(t) the input torque. In an observable canonical form,

the model is

A B
e,
. _[-%1 017
X = ZO X+ Ko u(t)
-J J
c
——
y=0=[10]x 35)

Consider the parameters b = 5, J = 10, k = 5 and K, = 100. For this case, it
is designed an observer for estimating the velocity when only the output measurement
is available, and no information on any parameter is available. It is just known that the
pair (A, C) is observable, so it can be transformed into an observable canonical form
(not necessarily in any canonical form). For this case, the system (34) takes the form

i B
i:[ 0 1,,]:‘:+[,9]u
-5-3 P
o,
—N—
y=[10]% 36)

where we know that its observable canonical form is (35), and that the relation between
x and X is

=21
and that the angular velocity of the system w = fisw = To = —%a:l + 5. So, if the

observer and identifier can estimate x5, then the angular velocity can be also estimated
by

Dy, x
2= _jml + I3 (38)

A,

8
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and
Ag
’-fh\
x=Ax+Bu=(A-LC)x+ Bu+ Ly = (A- LC)x + p(y,u)d 39)

It is known that z; = 6 and z, = 6. Now, we define the desired dynamics for the

system by choosing
_ -31 _ lan 1
R EHEES

So, by identifying L and B, the parameter relations 4 and % can be estimated by $ =
—(aj1+!;) and 5 = —(ag) +13). By applying the transformation (38), we can estimate
the angular velocity of the system.

In Fig. l.a it can be seen how the velocity estimation Z, tends to the real velocity z,
still when the parameters are unknown. For this simulation, the parameter adaptation is
stopped at ¢ = 100(s}, and then a different input signal is used in order to test the
effectiveness of the estimation. In Fig. 1.b it is shown the performance of the velocity
estimator after the estimation is suspended and the input changed. It can be seen that
the error is practically zero.

4.2 Parametric identification of a 2nd order system

In this example we will show that the proposed algorithm is not only capable of estimate
the velocity of an unknown system, but also helps to achieve a parametric identification.
The system (34) will be assumed once again to have unknown parameters. For this
example, let the nominal parameters be b = 0.1, J = 10, k = 3 and Ky = 2. For the
identifier, the desired dynamics for matrix A. = (A— LC) are such that the eigenvalues
are {—1.5, —2.5}, and the desired dynamics for the matrix A — LC are chosen such
that its eigenvalues are located in {—10, —12} and I' = 103 I2x,. The training was done
with a random input signal with unitary variance and zero mean, such that changes every
Ss. After training, it was obtained

s [399] 5 _ [1.0857x107°
b= [3.45] a = [ 0.2 ] ’ @l
From the nominal parameters, it is obtained that by = 0 and b, = 0.2 = ¥x,
an = ——J"-, az = —-5. After training, and solving the previous equations for b, k and

J, assuming only K, is known, it is obtained that J = 10.0017, b = 0.09999 and
k = 3.0005. It is clear that these parameters remain quite close to the real ones. In Fig.
2a it can be seen the evolution of the parameters during training, while in Fig. 2b and 2¢
a comparison of the parallel response of both systems is compared, with a RMS error
of 0.0048.

§ Conclusions

As estimator based on adaptive observer theory for unknown (assumed observable) lin-
ear systems was presented. In particular, the application was focused on the velocity
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Fig. 1. Simulation results for Example 3. ) During estimation ¢ € [0, 40](s), b) Estimation
stopped at ¢ = 100s]

estimation for 2nd order mechanical systems. Two examples were shown to demon-
strate the effectiveness of the method. It was also demonstrated that the method can be
employed for parameter identification or velocity estimation, where only the position
is assumed measurable and the parameters are unknown. The future work includes the

analysis for higher order systems and experimental applications.
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Fig. 2. Simulation results for Example 2
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